Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 11(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35740123

RESUMO

Efflux pumps in Gram-negative bacteria such as Pseudomonas aeruginosa provide intrinsic antimicrobial resistance by facilitating the extrusion of a wide range of antimicrobials. Approaches for combating efflux-mediated multidrug resistance involve, in part, developing indirect antimicrobial agents capable of inhibiting efflux, thus rescuing the activity of antimicrobials previously rendered inactive by efflux. Herein, TXA09155 is presented as a novel efflux pump inhibitor (EPI) formed by conformationally constraining our previously reported EPI TXA01182. TXA09155 demonstrates strong potentiation in combination with multiple antibiotics with efflux liabilities against wild-type and multidrug-resistant (MDR) P. aeruginosa. At 6.25 µg/mL, TXA09155, showed ≥8-fold potentiation of levofloxacin, moxifloxacin, doxycycline, minocycline, cefpirome, chloramphenicol, and cotrimoxazole. Several biophysical and genetic studies rule out membrane disruption and support efflux inhibition as the mechanism of action (MOA) of TXA09155. TXA09155 was determined to lower the frequency of resistance (FoR) to levofloxacin and enhance the killing kinetics of moxifloxacin. Most importantly, TXA09155 outperformed the levofloxacin-potentiation activity of EPIs TXA01182 and MC-04,124 against a CDC/FDA panel of MDR clinical isolates of P. aeruginosa. TXA09155 possesses favorable physiochemical and ADME properties that warrant its optimization and further development.

2.
J Antibiot (Tokyo) ; 75(7): 385-395, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35618784

RESUMO

FtsZ inhibitors represent a new drug class as no drugs using this mode of action (MOA) have been approved by regulators. 3-alkoxy substituted 2,6-difluorobenzamide scaffold is one of the most studied FtsZ inhibitors among which the most promising anti-MRSA candidate TXA709 is in clinical trial. In this paper, we present the screening and evaluation of a benzamide class that is functionalized at the alkoxy fragment targeting Gram-negative bacteria. The variations in 3-alkoxy substitutions, specifically the hydroxylated alkyl residues to the secondary and stereogenic pseudo-benzylic carbon of their methyleneoxy linker, are particularly active against K. pneumoniae ATCC 10031 in marked contrast to the derivatives related to PC190723, all of which were inactive against Gram-negative bacteria. The two lead molecules TXA6101 and TXY6129 inhibit the polymerization of E. coli FtsZ in a concentration-dependent manner and induce changes in the morphology of E. coli and K. pneumoniae consistent with inhibition of cell division. These classes of compounds, however, were found to be substrates for efflux pumps in Gram-negative bacteria.


Assuntos
Proteínas do Citoesqueleto , Escherichia coli , Antibacterianos/química , Antibacterianos/farmacologia , Proteínas de Bactérias/química , Benzamidas/química , Benzamidas/farmacologia , Proteínas do Citoesqueleto/química , Klebsiella pneumoniae
3.
Antibiotics (Basel) ; 11(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35052908

RESUMO

The ability to rescue the activity of antimicrobials that are no longer effective against bacterial pathogens such as Pseudomonas aeruginosa is an attractive strategy to combat antimicrobial drug resistance. Herein, novel efflux pump inhibitors (EPIs) demonstrating strong potentiation in combination with levofloxacin against wild-type P. aeruginosa ATCC 27853 are presented. A structure activity relationship of aryl substituted heterocyclic carboxamides containing a pentane diamine side chain is described. Out of several classes of fused heterocyclic carboxamides, aryl indole carboxamide compound 6j (TXA01182) at 6.25 µg/mL showed 8-fold potentiation of levofloxacin. TXA01182 was found to have equally synergistic activities with other antimicrobial classes (monobactam, fluoroquinolones, sulfonamide and tetracyclines) against P. aeruginosa. Several biophysical and genetic studies rule out membrane disruption and support efflux inhibition as the mechanism of action (MOA) of TXA01182. TXA01182 was determined to lower the frequency of resistance (FoR) of the partner antimicrobials and enhance the killing kinetics of levofloxacin. Furthermore, TXA01182 demonstrated a synergistic effect with levofloxacin against several multidrug resistant P. aeruginosa clinical isolates.

4.
J Org Chem ; 75(19): 6588-94, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20828175

RESUMO

Glycine-derived 1H-benzo[e][1,4]diazepin-2(3H)-ones (BZDs) 5d-g featuring C9- and N1- substitution exhibit enantiomerization barriers too high to be measured by (1)H NMR coalescence experiments. To address this problem, we found that room-temperature H/D exchange of these compounds is remarkably selective, affording only the axial-d(1) isotopomers. (1)H NMR spectroscopy was then employed to measure the rate of conformational inversion of these d(1)-compounds at elevated temperatures. These studies reveal the highest enantiomerization barriers (up to 28 kcal/mol) ever determined for a BZD. Density functional theory calculations match the experimental enantiomerization barriers within 1.2 kcal/mol.


Assuntos
Azepinas/química , Glicina/química , Simulação de Dinâmica Molecular , Cinética , Estrutura Molecular , Estereoisomerismo
5.
Biochem J ; 386(Pt 1): 169-76, 2005 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-15447632

RESUMO

UPPS (undecaprenyl pyrophosphate synthase) catalyses consecutive condensation reactions of FPP (farnesyl pyrophosphate) with eight isopentenyl pyrophosphates to generate C55 UPP, which serves as a lipid carrier for bacterial peptidoglycan biosynthesis. We reported the co-crystal structure of Escherichia coli UPPS in complex with FPP. Its phosphate head-group is bound to positively charged arginine residues and the hydrocarbon moiety interacts with hydrophobic amino acids including L85, L88 and F89, located on the alpha3 helix of UPPS. We now show that the monophosphate analogue of FPP binds UPPS with an eight times lower affinity (K(d)=4.4 microM) compared with the pyrophosphate analogue, a result of a larger dissociation rate constant (k(off)=192 s(-1)). Farnesol (1 mM) lacking the pyrophosphate does not inhibit the UPPS reaction. GGPP (geranylgeranyl pyrophosphate) containing a larger C20 hydrocarbon tail is an equally good substrate (K(m)=0.3 microM and kcat=2.1 s(-1)) compared with FPP. The shorter C10 GPP (geranyl pyrophosphate) displays a 90-fold larger K(m) value (36.0+/-0.1 microM) but similar kcat value (1.7+/-0.1 s(-1)) compared with FPP. Replacement of L85, L88 or F89 with Ala increases FPP and GGPP K(m) values by the same amount, indicating that these amino acids are important for substrate binding, but do not determine substrate specificity. With GGPP as a substrate, UPPS still catalyses eight isopentenyl pyrophosphate condensation reactions to synthesize C60 product. Computer modelling suggests that the upper portion of the active-site tunnel, where cis double bonds of the product reside, may be critical for determining the final product chain length.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas de Escherichia coli/metabolismo , Alquil e Aril Transferases/química , Sítios de Ligação , Proteínas de Escherichia coli/química , Farneseno Álcool/farmacologia , Hemiterpenos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Peso Molecular , Mutagênese Sítio-Dirigida , Compostos Organofosforados/metabolismo , Fosfatos de Poli-Isoprenil/biossíntese , Fosfatos de Poli-Isoprenil/metabolismo , Conformação Proteica , Proteínas Recombinantes de Fusão/metabolismo , Sesquiterpenos , Especificidade por Substrato
6.
J Med Chem ; 45(11): 2222-8, 2002 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-12014960

RESUMO

A series of 2-(2-nitrobenzoyl)cyclohexane-1,3-dione analogues (1-9) were designed, synthesized, and evaluated for inhibition of 4-hydroxyphenylpyruvate dioxygenase (4-HPPD), a key enzyme involved in the catabolism of tyrosine which catalyzes the conversion of 4-hydroxyphenylpyruvate to homogentisate. The correlations between the results of enzyme inhibition, ferric chloride tests, and the conformational analysis suggested that the tight binding between triketone-type inhibitors and 4-HPPD is likely due to chelation of the enzyme-bound ferric iron with the enol tautomer of 1,3-diketone moiety of the triketones. The presence of a 2-carbonyl group in the triketone is an essential structural feature for potent 4-HPPD inhibition. Modification of the 3-carbonyl group of triketone moiety to other functionality will reduce the overall planarity and thus prevent keto-enol tautomerization, resulting in a decrease or lack of inhibition activity.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , Cicloexanos/síntese química , Inibidores Enzimáticos/síntese química , Cetonas/síntese química , 4-Hidroxifenilpiruvato Dioxigenase/química , Quelantes/química , Cloretos , Colorimetria , Cristalografia por Raios X , Cicloexanos/química , Inibidores Enzimáticos/química , Compostos Férricos/química , Isomerismo , Cetonas/química , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade
7.
Bioorg Med Chem ; 10(3): 685-90, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11814856

RESUMO

Various 3-cyclopropanecarbonyloxy-2-cyclohexen-1-one 1 derivatives have been synthesized and tested as inhibitors of 4-hydroxyphenylpyruvate dioxygenase (4-HPPD) from pig liver. The inhibition results indicated that well-positioned dicarbonyl groups as well as the cyclopropyl group of 1 were essential for potent inhibition. Substitution at the 2-position of the ring system has a significant effect on inhibitor potency, while the 5-position can undergo substantial variations and retain inhibitor potency. In the compounds examined, 2-chloro substituted 12 is the best inhibitor of all with IC(50) of 15 nM, the rest of the synthesized analogues were less potent inhibitors than the parent compound.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , Cicloexanonas/síntese química , Inibidores Enzimáticos/síntese química , Animais , Cicloexanos/síntese química , Cicloexanos/química , Cicloexanos/farmacologia , Cicloexanonas/química , Cicloexanonas/farmacologia , Cicloexenos , Ciclopropanos/síntese química , Ciclopropanos/química , Ciclopropanos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Concentração Inibidora 50 , Fígado/enzimologia , Relação Estrutura-Atividade , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...